An Overview of the Use of the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) Model for the Study of Land-Atmosphere Interactions
نویسندگان
چکیده
Soil Vegetation Atmosphere Transfer (SVAT) models consist of deterministic mathematical representations of the physical processes involved between the land surface and the atmosphere and of their interactions, at time-steps acceptable for the study of land surface processes. The present article provides a comprehensive and systematic review of one such SVAT model suitable for use in mesoscale or boundary layer studies, originally developed by [1]. This model, which has evolved significantly both architecturally and functionally since its foundation, has been widely applied in over thirty interdisciplinary science investigations, and it is currently used as a learning resource for students in a number of educational institutes globally. The present review is also regarded as very timely, since a variation of a method using this specific SVAT model along with satellite observations is currently being considered in a scheme being developed for the operational retrieval of soil surface moisture by the US National Polar-orbiting Operational Environmental Satellite System (NPOESS), in a series of satellites that are due to be launched from 2016 onwards.
منابع مشابه
Advances in thermal infrared remote sensing for land surface modeling
Over 10 years ago, John Norman and co-authors proposed a thermal-based land surface modeling strategy that treated the energy exchange and kinetic temperatures of the soil and vegetated components in a unique ‘‘Two-Source Model’’ (TSM) approach. The TSM formulation addresses key factors affecting the convective and radiative exchange within the soil–canopy–atmosphere system, focusing on the rel...
متن کاملFAO-56 Dual Model Combined with Multi-Sensor Remote Sensing for Regional Evapotranspiration Estimations
The main goal of this study is to evaluate the potential of the FAO-56 dual technique for the estimation of regional evapotranspiration (ET) and its constituent components (crop transpiration and soil evaporation), for two classes of vegetation (olives trees and cereals) in the semi-arid region of the Kairouan plain in central Tunisia. The proposed approach combines the FAO-56 technique with re...
متن کاملA simple water and energy balance model designed for regionalization and remote sensing data utilization
A simple soil–vegetation–atmosphere transfer (SVAT) model designed for scaling applications and remote sensing utilization will be presented. The study is part of the Semi-Arid Land Surface Atmosphere (SALSA) program. The model is built with a single-bucket and single-source representation with a bulk surface of mixed vegetation and soil cover and a single soil reservoir. Classical atmospheric ...
متن کاملModeling Vegetation as a Dynamic Component in Soil-vegetation-atmosphere Transfer Schemes and Hydrological Models
[1] Vegetation affects the climate by modifying the energy, momentum, and hydrologic balance of the land surface. Soil-vegetation-atmosphere transfer (SVAT) schemes explicitly consider the role of vegetation in affecting water and energy balance by taking into account its physiological properties, in particular, leaf area index (LAI) and stomatal conductance. These two physiological properties ...
متن کاملMonitoring root-zone soil moisture through the assimilation of a thermal remote sensing-based soil moisture proxy into a water balance model
Two types of Soil Vegetation Atmosphere Transfer (SVAT) modeling approaches can be applied to monitor root-zone soil moisture in agricultural landscapes. Water and Energy Balance (WEB) SVAT modeling is based on forcing a prognostic root-zone water balance model with observed rainfall and predicted evapotranspiration. In contrast, thermal Remote Sensing (RS) observations of surface radiometric t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2009